Noncompetitive inhibition of phospholipase A_2 activity by magnesium G. Petroianu, U. Helfrich, W. Maleck, W. Bergler, R. Rüfer #### Zusammenfassung Magnesium (Mg2+) erfüllt vielfältige Funktionen im Organismus. In der Therapie des akuten Asthmas kann es intravenös und/oder als Aerosol aufgrund seiner bronchodilatatorischen Wirkung eingesetzt werden. Klinisch ist Asthma u.a. durch eine entzündliche Komponente, die mit einer Aktivitätserhöhung der Phospholipase A2 einhergeht, geprägt. Ziel der Studie war es, die Kinetik der Hemmung der PLA, durch Mg2+ zu bestimmen. Die PLA, wurde mit verschiedenen Substratkonzentrationen und entweder Puffer oder Mg2+ inkubiert. Anschließend wurde die Enzymaktivität in einem radioaktiven Assay bestimmt. Die Daten wurden zur Ermittlung der Hemmungsart nach Lineweaver-Burk ausgewertet. Mg2- hemmt die PLA2 mit statistischer Signifikanz (p \leq 0.01). Eine Abnahme des V_{max} Wertes bei gleichbleibendem K_M nach Mg² Einfluß spricht für eine nichtkompetitive Hemmung. $K_1 = 3.25 \text{ mM}$. #### Summary Magnesium (Mg2-) has a multitude of physiological effects. A new approach in the therapy of acute asthma is the use of intravenous and/or aerosolized Mg²⁻ as bronchodilatator. Asthma has also an inflammatory component, dependent among other things on the phospholipase A, (PLA,) activity. Purpose of this study was to quantify the inhibitory effect of Mg2- on the PLA₂ activity in an in vitro model and to describe the mechanism of inhibition. PLA2 was incubated with different substrate concentrations and either buffer or Mg^{2-} . The activity was measured in a radioactive assay. Lineweaver-Burk representation of the data was used to determine the type of inhibition. Mg^{2-} inhibits statistically significantly the PLA2 activity (p ≤ 0.01). After Mg2--exposure Vmax is decreased. The inhibition is noncompetitive. $K_1 = 3.25 \text{ mM}$. This work was supported by a grant from "Forschungsfonds der Fakultät für Klinische Medizin Mannheim der Universität Heidelberg". #### Introduction Asthma is a disease of the airways with bronchospastic and inflammatory components. Reports in the recent literature suggest an increase in asthmarelated morbidity and mortality [7]. This fuels the search for new drugs and application routes in the therapy for acute asthma i.a. phospholipase A2 (PLA₂) inhibitors [1, 12]. Magnesium (Mg^{2-}) is a potent PLA₂ inhibitor [20, 10]. The use of Mg²⁺ in the therapy of asthma has been recently extensively reviewed [7] and was also the topic of editorials [5]. PLA₂ (EC: 3.1.1.4) is a key enzyme in the metabolism of phospholipids. PLA₂ catalyzes the hydrolysis of membrane phospholipids in the sn-2-position to release fatty acid - mainly arachidonic acid - and cytptoxic products such as lysophosphatidylcholine (LPC) [9]. The extracellular PLA₂ (type I) is secreted by serous glands, while the intracellular PLA, type II is found in all cells investigated so far [16]. PLA₂ plays a major role in inflammatory reactions. Increased serum levels of PLA₂ (up to 30.000 U/ml) are described during inflammatory disease [16]. Type I initiates and propagates inflammation, modulates chemotaxis, phagocytosis and superoxide generation. It also enhances the vascular permeability [16]. The cytosolic type II releases fatty acids for the eicosanoid pathway. The release of PLA₂ may potentiate the inflammation in asthma and also causes a contraction of the airways [24]. A large number of activated megakaryocytes and platelets can be found in the airways in status asthmaticus [21]. The purpose of this study was to quantify the inhibitory effect of Mg²⁺ on platelet membrane PLA₂ activity in an *in vitro* model and describe the mechanism of inhibition. #### Abbreviations: AA: arachidonic acid factor linking the true V_{max} determined in the absence of the inhibitor to the apparent V_{max} determined in the presence of an inhibitor: apparent $V_{max} = (1/\alpha) V_{max}$ BL: baseline Ca2+: calcium FEV₁: forced expiratory volume in 1 sec K₁: inhibition constant Michaelis-Menten constant LPC: lysophosphatidylcholine Mg2+: magnesium MV: mean value p: probability value PC: phosphatidylcholine PLA2: phospholipase A2 SD: standard deviation V_{max}: maximal velocity #### Materials and methods All determinations of PLA₂ were performed using commercially available chemicals. ### Preparation of human platelet membranes Ten millitres of blood were taken from three female and four male healthy volunteers with normal body weight and no medications. Three were # Noncompetitive inhibition of phospholipase A₂ activity by magnesium Fig. 1: PLA₂ activity [% of BL] (y-axis) after incubation with different concentrations of Mg^{2+} (0-0.042-0.42-4.2 mM) (x-axis) for 30 min. $(n=9)*=p \le 0.01$. Fig. 2: Michaelis-Menten representation: V_{max} is apparently decreased after exposure to 4.2 mM Mg²⁺, while K_M does not change as shown in the Michaelis-Menten representation. Fig. 3: Lineweaver-Burk representation: Magnesium (4.2 mM) inhibits PLA_2 activity in a noncompetitive manner. Coefficients of correlation: $r_{native} = 0.98 \ r_{Mg} = 0.95$ smokers and four nonsmokers. Platelets were sedimented by centrifugation and suspended into TRIS buffer (pH 7.4; 50 mM) containing 8.0 g of saccharose in 100 ml. ### Determination of the protein concentrations The modified Lowry method was used to measure the protein concentrations. [8, 17]. #### Magnesium exposure Human platelet membranes containing active PLA₂ dissolved in TRIS buffer (pH 9.0; 1M) were incubated for 30 min with a) or b) respectively: - a. TRIS buffer = native samples - b. Mg²⁺: 1, 10 or 100 μg/ml (0.042, 0.42 or 4.2 mM) After the incubation time the protein concentration was diluted to $20~\mu g/ml$ by adding TRIS buffer. #### Assay of PLA₂ activity PLA₂ activity was measured by the method of *Flesch* [6] and *Sundaram* [23] as previously reported [14]. PLA₂ activities were expressed in pmol/mg protein/min. Mean values were used for statistical analysis with the Mann-Whitney rank order test (fig. 1). Baseline values (BL = native activity: incubation time of 0 min, no drugs added) were considered to be 100%. All other values were expressed as a percentage thereof. #### $\boldsymbol{K}_{\boldsymbol{M}}$ and \boldsymbol{V}_{max} determinations Commercially available purified porcine PLA₂ (Sigma, Steinheim-Germany) was incubated with different substrate concentrations (0 – 300 μM) in the absence or presence of Mg²⁺ (4.2 mM) for 30 min respectively. The PLA₂ activity was determined in a commercially available radioactive PLA₂ assay (Scintillation Proximity Assay: SPA; Amersham, Braunschweig-Germany). Mean values (MV) # Noncompetitive inhibition of phospholipase A₂ activity by magnesium | : | | Native sample ([1] = 0) | Mg^{2+} sample $([I] = 4.2 \text{ mM})$ | |--|----------|-------------------------|---| | Κ _Μ [μΜ] | | 75.0 | 75.0 | | α | | 1 | 2.19 | | (1/α)V _{max}
[pmol/mg prot | ein/min] | 175.0 | 80.0 | | K ₁ [mM] | | N.A. | 3.53 | Tab. 1: The effect of increasing concentrations of Mg^{2+} on PLA_2 activity in the absence of substrate as determined 30 min after substrate addition. MV and SD (n = 9) of absolute values [pmolAA/mg protein/min] and as a percentage of BL. Compared to BL the inhibition is statistically significant: $p \le 0.01$ (*) | Mg ²⁺ [mM] | 0 (BL) | 0.042 | 0.42 | 4.2 | |--------------------------|--------------|-------------|-------------|------------| | [pmol/mg
protein/min] | 23.8 ± 3.7 | 13.9 ± 2.1* | 11.8 ± 2.0* | 5.9 ± 3.4* | | [%] | 100 ± 16 | 58 ± 9* | 50 ± 8* | 25 ± 14* | of the data were plotted as Michaelis-Menten (fig. 2) and Line-weaver-Burk (fig. 3) diagrams. #### Results Results are shown in table 1 and figures 1, 2 and 3 and can be summarized as follows: ## Dose dependency (human platelet PLA₂): • Magnesium inhibits PLA_2 activity in a dose dependent manner. Subphysiological Mg^{2+} -levels (0.042 mM and 0.42 mM) cause an inhibition of 50-60% of native activity. Concentrations in the supraphysiological range (4.2 mM) decrease the activity to 25%. Compared to baseline values the results are statistically significant ($p \le 0.01$). $K_1 = 3.25$ mM (human platelet PLA_2). [table 1 and figure 1] ### Kinetic determinations (porcine PLA₂): V_{max} is apparently decreased after exposure to 4.2 mM Mg²⁺, while K_M does not change as shown in the Michaelis-Menten representation [figure 2]. Lineweaver-Burk representation suggests a noncompetitive inhibition [figure 3]. #### **Discussion** Mg^{2+} is a potent PLA₂ inhibitor [20, 10]. Its use for asthma therapy has been advocated as early as 1987 [13, 19] and little later by McNamara who suggested that i.v. applied Mg²⁺ could help avoid endotracheal intubation [11]. Inhaled Mg2+ decreases bronchoconstriction (in vitro and in vivo) and increases FEV₁ in histamine [19, 18], metacholine [4] and betanechol [22] induced bronchoconstriction. In addition, to the well known muscle relaxing effect, Mg²⁺ has anti-inflammatory properties such as stabilization of mast cell membranes [22] and attenuation of neutrophil burst reaction [3]. The physiologic magnesium blood level in humans is in the range 0.6 to 1 mmol/l. We used in vitro two subphysiologic (0.042 and 0.42 mM) and one supraphysiologic (4.2 mM) concentration. When applied i.v. Mg²⁺ levels in the blood will of course increase. This increase (depending on the total amount and application rate) will in most cases level off due to intracellular uptake at around 2 - 3 mmol/l. The supraphysiologic concentration we used is at the higher end of those achievable in vivo by i.v.-application. However when applied intratrachealy, the local magnesium concentration can easily exceede 4.2 mM. As such we conclude that the inhibitor concentrations we used in vitro have clinical significance and are easily achievable in vivo. A marked inhibitory effect of subphysiological, physiological and supraphysiological Mg2+ levels on platelet membrane PLA, activity was demonstrated. PLA₂ activity depends on the presence of Ca2+-ions. The Mg2+-ion competes with Ca2+ to bind at the PLA2-molecule. Other divalent cations have a similar inhibitory effect [20, 10]. These findings imply that PLA₂ activity is modulated by Mg2+ and that an increase in Mg2+ concentration could further reduce the activity of the enzyme. While the source of the enzyme is probably of little importance for the Mg2+ effect, we felt that platelets who have been shown to play a pivotal role in asthma, are probably a good source for the enzyme [21]. We have shown that the Mg²⁺/PLA₂ interaction leads to a decreased maximal velocity (V_{max}) while K_M does not change. The Lineweaver-Burk representation suggests a noncompetitive (mixed) inhibition where Mg²⁺ interacts with the PLA₂-molecule and the enzyme-substrate-complex. The inhibitory effect of Mg²⁺ on PLA₂ activity is much more pronounced than that of furosemide [15], an other drug which was shown to have a positive effect when inhaled in asthma [2]. PLA₂ is involved in inflammatory processes. As such an inhibition of PLA₂ by Mg²⁺ in vitro suggests an anti-inflammatory effect. If the results are reproducible in vivo the application of Mg²⁺ in asthma-therapy, as an anti-inflammatory drug with additional smooth muscle relaxant effect, might be warranted. # Noncompetitive inhibition of phospholipase A₂ activity by magnesium #### References - [1] *Barnes*, *P.J.*: New drugs for asthma. Clin. Exp. Allerg. **26** (1996) 738 745. - [2] Biance, S.; Robuschi, M.; Vaghi, A.; Pasargiklian, M.: Prevention of exerciseinduced bronchoconstriction by inhaled frusemide. Lancet 30 (1988) 252 – 255. - [3] Cairns, C.B.; Kraft, M.: Magnesium attenuates the neutrophil respiratory burst in adult asthmatic patients. Acad. Emerg. Med. 3 (1996) 1093 1097. - [4] Chande, V.T.; Skoner, D.P.: A trial of nebulized magnesium sulfate to reverse bronchospasm in asthmatic patients. Ann. Emerg. Med. 21 (1992) 1111 1115. - [5] Cydulka, R.K.: Why magnesium for asthma? Acad. Emerg. Med. 3 (1996) 1084 – 1085. - [6] Flesch, I.: Schmidt, B.; Ferber, E.: Acylchain specificity, and kinetic properties of phospholipase A₁, and A₂ of bone marrow derived macrophages. Z. Naturforsch. 40c (1985) 356 – 363. - [7] Jagoda, A.; Shepherd, S.M.; Spevitz, A.; Joseph, M.: Refractory asthma, part 1: epidemiology, pathophysiology, pharmacologic interventions. Ann. Emerg. Med. 29 (1997) 262 – 274. - [8] Lowery, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J.: Protein measurement with the folin phenol reagent. Biol. Chem. 193 (1951) 265 – 275. - [9] Mansbach, C.M.: Phospholipases: old enzymes with new meaning. Gastroenterology 98 (1990) 1369 – 1382. - [10] Märki, F.; Franson, R.: Endogenous suppression of neutral-active and calciumdependent phospholipase A₂ in human polymorphonuclear leukocytes. Biochem. Biophys. Acta 879 (1986) 149 – 156. - [11] McNamara, R.M.; Spivev, W.H.; Skobeloff, E.; Jacubuwitz, S.: Intravenous magnesium sulfate in the management of acute respiratory failure conplicating asthma. Ann. Emerg. Med. 18 (1989) 197 – 199. - [12] Mlodzik, H.: Agents for the treatment of asthma: patent analysis 1990 – 1995. Expert. Opin. Ther. Pat. 6 (1996) 57 – 60. - [13] Okayama, H.; Aikawa, T.; Okayama, M.; Sasaki, H.; Mue, S.; Takishima, T.: Bronchodilating effects of intravenous magnesium sulfate in bronchial asthma. J. Am. Med. Assoc. 257 (1987) 1076 – 1078. - [14] Petroianu, G.; Helfrich, U.; Schmitt, A.; Bergler, W.; Ruefer, R.: Dose-dependent inhibition of phospholipase A₂ by paraoxon in vitro: preliminary results. J. Appl. Toxicol. 17 (1997) 421 – 424. - [15] Petroianu, G.; Helfrich, U.; Rüfer, R.: Influence of theophylline and furosemide on the PLA₂ activity. Naunyn-Schmiedeberg's Arch. Pharmacol. 356 (Suppl. 1) (1997) R29. - [16] Pruzanski, W.; Vadas, P.: Soluble phospholipase A₂ in human pathology: clinical-laboratory interface. In Mukherjee, A.B. (ed): Biochemistry, Molecular Biology, and Physiology of Phospholipase A₂ and its Regulatory Factors. Plenum Press N.Y. 279 (1990) 239 251. - [17] Richterich, R.: Klinische Chemie. Akad. Verlagsges., 4th edn., Frankfurt 1978, 527 – 530. - [18] Rolla, G.; Bucca, C.; Bugiani, M.; Arossa, W.; Spinaci, S.: Reduction of histamine induced bronchoconstriction by magnesium in asthmatic subjects. Allergy 42 (1987) 186–188. - [19] Rolla, G.; Bucca, C.; Caria, E.: Dose-related effect of inhaled magnesium sulfate on histamine bronchial challenge in asthmatics. Exp. Clin. Res. 14 (1988) 609 612. - [20] Rönnko, S.: Purification and characterization of phospholipase A₂ from bovine prostate. Int. J. Androl. 15 (1992) 394 406 - [21] Slater, D.; Martin, J.; Trowbridge, A.: The platelet in asthma. Lancet 12 (1985) 110. - [22] Spivey, W.H.; Skobeloff, E.M.; Levin, R.M.: Effect of magnesium chloride on rabbit bronchial smooth muscle. Ann. Emerg. Med. 19 (1990) 1107 – 1112. - [23] Sundaram, G.S.; Shakir, K.M.M.; Barnes, G.; Margolis, S.: Release of phospholipase A2 and triglyceride lipase from rat liver. Biol. Chem. 253 (1978) 7703 – 7710. - [24] Vadas, P.: Stefanski, E.: Wloch, M.: Groux, B.: Van den Bosch, H.: Kennedy, B.: Secretory non-pancreatic phospholipase A₂ and cyclogenase-2 expression by tracheobronchial smooth muscle. Eur. J. Biochem. 235 (1996) 557–563. Correspondence to: Priv. Doz. Dr. med. Georg Petroianu, Department of Pharmacology and Toxicology University of Heidelberg at Mannheim, 14 – 16 Maybach Street, D-68169 Mannheim, Germany